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Targeting the mitochondria in acute
myeloid leukemia

Silvia Elena Sánchez-Mendoza1,2 and Eduardo M. Rego1*
Abstract

Acute myeloid leukemia (AML) is a clonal hematologic neoplasm characterized by heterogeneity of genetic abnormalities
found at diagnosis. These abnormalities serve to classify patients by risk group into low, intermediate, and high risk. It also
provides specific targets for the development of new combinational therapies. However, because of the heterogeneity of
genetic abnormalities, targeted therapy is not always possible. Altered mitochondrial metabolism is a common feature in
cancer cells, a phenomenon first described by Otto Warburg. In AML patients, the discovery of mutations in the isocitrate
dehydrogenase gene provided for the first time a link between altered mitochondrial metabolism and AML. This raised
the possibility of testing drugs known as mitocans for new combinational therapeutic approaches. Mitocans are a diverse
group of anti-cancer compounds that target mitochondria. They disrupt energy production leading to enhanced
generation of reactive oxygen species along with the activation of the intrinsic pathway of apoptosis. The present
review discusses the different types of mitocans and their mechanism of action along with preclinical and clinical
studies in AML.
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Background
Acute myeloid leukemia (AML) is a clonal hematologic
malignancy characterized by a block in terminal myeloid
cell differentiation and uncontrolled proliferation [1, 2].
This results in clonal expansion and accumulation of
immature myeloid cells in the bone marrow that fail to
differentiate further into normal functional cells. Cur-
rently, genetic abnormalities found at diagnosis are used
to classify the disease in subgroups and to assess patients’
risk [3, 4]. These genetic abnormalities serve as important
targets for drug therapy. In acute promyelocytic leukemia
(APL), translocation t(15;17) (q22;q12) results in a PML-
RARA (Promyelocytic Leukemia-Retinoic acid receptor
alpha) fusion gene product. Two retinoid receptors
encoded by the RARA and the retinoid X receptor (RXR)
genes are involved in recognizing oligonucleotide se-
quences in promoter regions. This complex associates
with nuclear co-repressors Sin3a and Sin3b, histone
deacetylase (HDAC), and DNA methyltransferase and re-
presses transcription of DNA. Physiological concentration
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of all-trans retinoid acid (ATRA) dissociates this complex
and initiates transcription of elastase and peroxidase genes
involved in myeloid differentiation. The PML-RARA gene
fusion makes the RARA domain of the oncoprotein less
sensitive to physiological concentrations of ATRA. Thus,
the repression complex is retained, leading to maturation
arrest at the promyelocyte stage of myeloid differentiation.
Pharmacological concentrations of ATRA dissociates the
repressor complex and promotes promyelocyte differen-
tiation in APL patients [5]. Hence, APL is a model in
which the genetic hallmark associated with the disease
provides an effective drug target. Combination of ATRA
with conventional chemotherapy achieved complete re-
mission in more than 85% of patients. Nevertheless, resis-
tance to ATRA remains a clinically relevant problem [6].
Another example of targeted therapy in AML patients
with a FLT3-ITD (Fms-like tyrosine kinase 3-internal tan-
dem duplication) or FLT3-TKD (tyrosine kinase domain)
mutation is the use of FLT3 kinase inhibitors. Phase III
RATIFY trial showed significant improvement in overall
survival (OS) and event-free survival (EFS) in patients
treated with Midostaurin (FLT3 kinase inhibitor) com-
bined with conventional therapy followed by maintenance
therapy with Midostaurin [7]. However, patients with
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FLT3 mutations still have a poor prognosis and could
benefit from new combinational therapies. An additional
challenge of designing targeted therapies for AML is the
diversity of genetic alterations found at diagnosis [1].
Therefore, identifying a common target that detects
different types of AML could be promising for new
therapeutic approaches.

Altered mitochondrial metabolism in AML
Warburg and his colleagues observed increased meta-
bolism of glucose to lactate in tumor tissues compared
to normal tissues. This was the first observation sug-
gesting an altered cellular metabolism in cancer cells
known as “Warburg effect” [8]. Deregulation of cellular
energetics is an emerging hallmark of cancer as
described by Hanahan and Weinberg. Loss of control
over cell proliferation demands a change in energy meta-
bolism in cancer cells to support cell growth and division
[9]. Increased glycolysis in cancer cells provides interme-
diates for anabolic reactions such as glucose 6-phosphate
(G6P) for glycogen and ribose 5-phosphate synthesis,
dihydroxyacetone phosphate for triacylglyceride and
phospholipid synthesis, and pyruvate for alanine and
malate synthesis. Truncated tricarboxylic acid (TCA) cycle
is another source by which proliferating cancer cells get
enough intermediate molecules such as acetyl coenzyme
A (acetyl-CoA) used for the synthesis of fatty acids,
cholesterol, and isoprenoids [10, 11].
In AML patients, evidence of altered mitochondrial

metabolism was related to mutations in isocitrate de-
hydrogenase (IDH). IDH3 is an isoform of the IDH
enzyme that catalyzes the conversion of isocitrate into
alpha(α)-ketoglutarate in TCA cycle. The isoforms
IDH1 and IDH2 catalyze the same reaction outside
the TCA cycle [2]. Mutations in IDH1 confer inferior
overall survival (OS) and higher risk of relapse in mo-
lecular low-risk AML patients with normal karyotype
(mutated nucleophosmin (NPM1) without FLT3-ITD
mutation), while single nucleotide polymorphism
(SNP) rs11554137 is associated with inferior outcome
in molecular high-risk AML patients with normal
karyotype (mutated or wilt type NPM1 with FLT3-
ITD mutation). IDH2 R172 mutation is associated
with lower complete remission (CR) rate. Both IDH1
and IDH2 mutations confer an enzymatic gain of
function that endows the enzyme with the ability to
convert α-ketoglutarate into 2-hydroxyglutarate (2HG)
[2, 12]. 2HG is an oncometabolite associated with re-
pression of the inducible expression of lineage-specific
differentiation genes and a block to differentiation by
impairing histone methylation [2, 13].
Proof of altered mitochondrial metabolism in AML

patients is further demonstrated by the metabolites in-
volved in glucose metabolism having prognostic value in
AML patients with normal karyotype. Six serum meta-
bolite markers (lactate, 2-oxoglutarate, pyruvate, 2HG,
glycerol-3-phosphate, and citrate) were studied and used
to generate a prognosis risk score (PRS). A low PRS cor-
related with poor survival and increased expression of
genes involved in glycolysis and TCA cycle in AML blast
cells [14]. Thus, targeting the mitochondria may be a
key strategy in the identification of combinational
therapies for treating AML patients.

Mitocans
Mitocans are a diverse group of mitochondria-targeted
drugs with an anti-cancer role. Their mechanism of action
involves disruption of energy producing systems of
mitochondria, increase the production of reactive oxygen
species (ROS) and activates the mitochondrial dependent
intrinsic pathway of apoptosis in cancer cells [15].
There are several types of mitocans based on their

mechanism of action (Fig. 1), such as hexokinase inhibi-
tors, compounds targeting B-cell lymphoma 2 (Bcl-2)
family proteins, thiol redox inhibitors, voltage-dependent
anion-selective channel/adenine nucleotide translocase
(VDAC/ANT) targeting drugs, lipophilic cations targeting
the inner membrane, agents affecting TCA cycle, drugs
targeting mitochondrial DNA (mtDNA), and electron
transport chain-targeting drugs [16]. The present review
focuses on these mechanisms in relation to in-vitro or in-
vivo studies in AML models, except for VDAC/ANT
targeting drugs, lipophilic cations targeting the inner
membrane, and agents affecting tricarboxylic acid cycle.

Hexokinase inhibitors
These compounds inhibit hexokinase, the enzyme catalyz-
ing the first step of glycolysis involving the conversion of
glucose to G6P [16]. Unlike normal tissues, cancer cells
are characterized by an increase in glycolysis (Warburg
effect) to maximize the production of adenosine triphos-
phate (ATP) to meet the energy requirements for cellular
proliferation [8, 17]. This glycolytic phenotype of cancer
cells is used in fluorodeoxyglucose positron emission
tomography (18FDG-PET) for diagnosis, staging, follow-
up, detection of relapse, and monitoring tumor progres-
sion in cancer [9, 18–20]. Hexokinase type II, one of the
four isoforms of hexokinase, is up-regulated in cancer
cells [20–22]. This overexpression can be related to an
increase in gene copy number or gene promoter capacity
to respond to several stimuli resulting from hypoxia or
signals activated by glucose, insulin, and phorbol esters
[11, 17]. Hexokinase type II binds to the cytosolic side of
the VDAC located in the mitochondrial outer membrane
(Fig. 1). VDAC also interacts with ANT situated in the
mitochondrial inner membrane. This complex is respon-
sible for the transport of ATP that is produced by the
electron transport chain outside mitochondria. This



Fig. 1 Types of mitocans based on their mechanism of action. a(Figures were mounted with graphics available at http://www.servier.com/
Powerpoint-image-bank)
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provides hexokinase II with sufficient ATP required for
the conversion of glucose to G6P. Besides ATP transport,
VDAC/ANT is involved in the regulation of mitochon-
drial permeability transition and release of cytochrome c.
The association of hexokinase II with the cytosolic region
of VDAC regulates the intrinsic pathway of apoptosis
[11, 16, 17] and contributes to the maintenance of
mitochondrial stability [11, 21].
In vitro, increase in glycolysis results in decreased

sensitivity to arabinofuranosyl cytidine (Ara-C) in AML
cell lines U937, OCI-AML3, THP-1, and KG-1. Com-
bined treatment with 2-Deoxy-D-glucose (2-DG) and
Ara-C showed synergistic effect in these cell lines. Thus,
inhibition of glycolysis increased ARA-C sensitivity. In
addition, primary blasts derived from AML patients
responded to both 2-DG treatment alone, and in com-
bination with Ara-C [14]. In another study, aurora
kinase inhibitors induced polyploidy in U937 and NB4
cell lines. These polyploid cells showed increased con-
sumption of glucose and increased production of lactase.
Cell viability decreased with increasing concentration of
2-DG [23]. Expression of mutant Cbl (Casitas B-lineage
lymphoma) proto-oncogene (CBL) in FLT3-expressing
Ba/F3 cells increased ROS production and enhanced
glucose consumption. Treatment with 2-DG diminished
cell growth and FLT3 phosphorylation [24]. Taken to-
gether, these results suggest hexokinase inhibitors as
suitable alternatives for further investigation as candi-
dates for combinational therapy.

Drugs targeting Bcl-2 protein family
Bcl-2 protein family is functionally anti-apoptotic and its
members are characterized by the presence of four con-
served regions known as Bcl-2 homology (BH) domains
(BCL-2, BCL-W, BCL-XL, A1, and MCL-1). They are
located on the outer mitochondrial membrane (Fig. 2)
and interact with other members of this family known as
“effectors” (BAK, BAX, and BOK) through their BH3
domain. These “effectors” are pro-apoptotic Bcl-2 pro-
teins that oligomerize and form pores in the outer mito-
chondrial membrane. This oligomerization is prevented
by the interaction of anti-apoptotic Bcl-2 proteins with
the “effector” proteins. A third group of pro-apoptotic
Bcl2 proteins known as “BH3 only” (BID, BIM, BAD,
BIK, BMF, BNIP3, HRK, NOXA, and PUMA) interrupt
this interaction. This leads to pore formation and
permeabilization of the outer mitochondrial membrane
releasing cytochrome c that initiates the intrinsic path-
way of apoptosis [25]. Drugs known as BH3 mimetics
exert the same function as “BH3 only” proteins [16].
Mitochondrial priming is the capacity of mitochondria
to enter apoptosis when exposed to standard concentra-
tions of peptides derived from BH3-only proteins. This
process is measured by BH3 profiling and can be
followed by observing the release of cytochrome c or by
measuring the loss of mitochondrial membrane poten-
tial. The more cells are primed for death, the greater the
loss of mitochondrial membrane potential. This property
correlates with the success of clinical induction and
refines the prognostic information obtained from cyto-
genetic and genetic markers. Furthermore, chemosensi-
tive and chemoresistant myeloblasts but not normal
hematopoietic stem cells (HSCs) showed BCL-2 depen-
dency in BH3 profiling [26]. This provides the basis for
the use of BCL-2 antagonists for the development of
new therapeutic strategies for treating AML patients.
BH3 mimetic obatoclax combined with tyrosine kinase
inhibitor sorafenib potentiated apoptosis and reduced
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Fig. 2 Mechanism of action of BH3 mimetics. a(Figures were mounted with graphics available at http://www.servier.com/Powerpoint-image-bank)
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clonogenic growth of primary AML cells and AML cell
lines. Additionally, this combined treatment in a xenograft
mouse model reduced tumor growth, induced apoptosis,
and prolonged survival [27]. In another study, Bcl-2/Bcl-xL
antagonist ABT-737 combined with mammalian Target of
Rapamycin complex 1 and 2 (mTORC1/2) inhibitor
INK128 induced cell death in various AML cell lines and
primary AML cells carrying mutations in FLT3, IDH2,
NPM1 and kirsten rat sarcoma viral oncogene homolog
(Kras) genes. This drug combination decreased leukemic
growth and increased survival in a mouse xenograft model
[28]. Hence, BH3 mimetics are promising alternatives to
explore new drug combinations.
Drugs targeting mtDNA
Mitochondrial genome is about 16.6 kilobases (kb) in
size. It contains 27 genes: 13 of which encode the 90
respiratory chain proteins, 2 ribosomal ribonucleic acid
(rRNAs), and 22 transfer ribonucleic acids (t-RNAs)
[29, 30]. AML cells have a greater copy number of
mtDNA compared to normal HSCs. This suggests the
presence of larger number of mitochondria in AML
cells, implying higher rates of oxygen consumption
[30]. Hence, targeting mtDNA is an alternative
method for developing new treatment strategies that
are directed specifically against AML cells while spa-
ring normal HSCs. The drug bleomycin stimulates
cell death in AML cells by inducing mtDNA damage.
Jurkat rho zero (ρ0) cells (cells without mitochondria)
are more resistant to bleomycin treatment than their
wild type counterparts. Furthermore, bleomycin da-
maged the mtDNA and inhibited cell growth in a
xenograft mouse model [29].
Thiol redox inhibitors
This class of mitocan includes arsenic trioxide (ATO), a
drug used as a second line of treatment in APL patients.
As frontline treatment, ATO combined with ATRA is as
effective as the combinational therapy of ATRA and
chemotherapy [5, 31]. At high doses, promyelocytes
undergo apoptosis in response to ATO. Concerning
APL, three different mechanisms of action are described
to explain the effect of ATO, namely: 1) ROS produc-
tion, which in turn activates Jun N-terminal kinase
(JNK) leading to apoptosis, 2) phosphorylation and
sumoylation of PML-RARα leading to its degradation,
and 3) inhibition of transcription of human telomerase
reverse transcriptase (hTERT), leading to decreased
telomerase activity with subsequent chromosomal fusion
and apoptosis (Fig. 3) [5, 32]. ATO inhibited the C-terminal
and N-terminal active sites of the mammalian thioredoxin
reductase (TrxR) enzyme in MCF-7 breast cancer cells
in vitro. Alternatively, in the absence of reduction of thiore-
doxin (Trx), binding to other proteins such as apoptosis
signal-regulating kinase 1 (ASK1) is blocked, leading to
downstream activation of JNK, and ASK1-mediated cell
death. This suggests a related mechanism of action for
ATO and Trx mediated apoptosis [33]. Degradation of
PML-RARα fusion protein involves binding of ATO to the
PML moiety. A disulfide bond in the B boxes and the RING
region facilitates crosslinking of PML-RARα dimer. Upon
crosslinking, ubiquitin-conjugating enzyme 9 (UBC9) asso-
ciates with PML-RARα leading to enhanced sumoylation,
which in turn ubiquitylates PML-RARα and directs it to
proteasome-mediated degradation [34]. Additionally, ATO
represses hTERT transcription by down-regulating the
transcription factors Sp1, c-Myc, NF-kB, and USF2 at the
level of messenger RNA (mRNA) and protein [35].
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Fig. 3 Mechanism of action of ATO. a(Figures were mounted with graphics available at http://www.servier.com/Powerpoint-image-bank)
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Drugs targeting electron transport chain
Electron transport chain is formed by 4 protein com-
plexes (Complex I to IV) located in the mitochondrial
inner membrane (Fig. 4). These four protein complexes
transport electrons through the mitochondrial inner
membrane from nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FADH2) pro-
duced during glycolysis and TCA cycle to molecular
oxygen (O2) which acts as a final electron acceptor.
Energy liberated by this process of electron transport is
used to pump hydrogen ions (H+) from the matrix into
the intermembrane space. This gives rise to a membrane
potential in which the side of the inner membrane in
contact with the matrix becomes negative and the side
Fig. 4 Mechanism of action of electron chain-targeting drugs. Green arrow
at http://www.servier.com/Powerpoint-image-bank)
in contact with the intermembrane space becomes posi-
tive. This membrane potential serves to activate the ATP
synthase complex that generates ATP [36]. A variety of
drugs are available that inhibit any one of these four
complexes of the electron transport chain, resulting in
the loss of mitochondrial membrane potential with the
subsequent generation of ROS. Cancer cells are charac-
terized by higher levels of oxidative stress and when
exposed to higher levels of ROS, they commit to apop-
tosis more readily than normal cells [16]. One example
of this phenomenon is the greater sensitivity of myeloid
progenitors from PML-RARα transgenic mice to ROS
than their wild types counterparts when treated with
(+)α-tocopheryl succinate (α-TOS), a complex I inhibitor
s indicate electron flux. a(Figures were mounted with graphics available
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[37]. In the same study, α-TOS also proved to be as ef-
fective as ATRA or ATO in prolonging the survival in a
murine syngeneic transplant model, in which recipients
received leukemic cells from human cathepsin-G-PML-
RARA (hCG-PML-RARA) transgenic mice [37, 38]. As
already mentioned, ATRA and ATO are currently used
as standard treatment for APL patients. Therefore,
α-TOS is a suitable alternative for the study of new
combinational therapies.

Conclusions
Aberrant mitochondrial metabolism is a common feature
of cancer cells and this opens up the possibility for the use
of drugs known as mitocans. Several studies using in vitro
and in vivo AML models have already evidenced the
advantage of using mitocans in combinational therapies.
Furthermore, ATO, a type of mitocan, has already proven
to be effective at the clinical level for APL patients. In con-
clusion, mitocans are a suitable alternative for the develop-
ment of new combinational therapies in treating AML.
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