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Abstract

benign melanocytes, the precursor cells of CM.

from TCGA were recovered to validate our findings.

methylation level: r > 0,95; Pearson’s test: p < 2.2e-16).

contributes to melanomagenesis in general.

Background: Cutaneous melanoma (CM) is the most aggressive subtype of skin cancer, with increasing incidence
over the past several decades. DNA methylation is a key element of several biological processes such as genomic
imprinting, cell differentiation and senescence, and deregulation of this mechanism has been implicated in several
diseases, including cancer. In order to understand the relationship of DNA methylation in CMs, we searched for an
epigenetic signature of cutaneous melanomas by comparing the DNA methylation profiles between tumours and

Methods: We used 20 primary CMs and three primary cell cultures of melanocytes as a discovery cohort. The
tumours mutational background was collected as previously reported. Methylomes were obtained using the
HM450K DNA methylation assay, and differential methylation analysis was performed. DNA methylation data of CMs

Results: A signature of 514 differentially methylated genes (DMGs) was evident in CMs compared to melanocytes,
which was independent of the presence of driver mutations. Pathway analysis of this CM signature revealed an
enrichment of proteins involved in the binding of DNA regulatory regions (hypermethylated sites), and related to
transmembrane signal transducer activities (hypomethylated sites). The methylation signature was validated in an
independent dataset of primary CMs, as well as in lymph node and distant metastases (correlation of DNA

Conclusions: CMs exhibited a DMGs signature, which was independent of the mutational background and possibly
established prior to genetic alterations. This signature provides important insights into how epigenetic deregulation
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Background

DNA methylation is the covalent addition of methyl rad-
icals at nucleotides, mainly at CpG sites, which is cata-
lysed by the DNA methyltransferase (DNMT) enzyme
family. In the context of gene promoters enriched in
CpG dinucleotides, this epigenetic mark is consistently
associated with the stable repression of gene expression
[1]. DNA methylation is a key element of several bio-
logical processes such as genomic imprinting, cell differ-
entiation and senescence, and deregulation of this
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mechanism has been implicated in several diseases, in-
cluding cancer [1].

Cutaneous melanoma (CM) is the most aggressive
subtype of skin cancer, with increasing incidence over
the past several decades [2]. Efforts to understand the
molecular biology of CM has led to improvements in
the clinic, such as the discovery of recurrent mutations
in the MAP kinase pathway, which are responsible for
the transduction of proliferative extracellular signals. A
hotspot mutation in the BRAF oncogene (BRAFV600E)
is a target for selective inhibitors, which has been shown
to improve the overall and progression-free survival of a
group of patients [3].
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In addition to screening for driver mutations in CMs
for treatment management, data on epigenetic deregula-
tion have also been translated to the clinic: the gain of
methylation in a panel of genes is associated with in-
creasing tumour stage [4], and the presence of methyl-
ated genes in the serum of CM patients can predict
responses to biochemotherapy and disease outcome [5].

Recently, Hou et al. observed that melanoma cell lines
harbouring BRAFV600E mutations undergo major DNA
methylation alterations (both hypomethylation and
hypermethylation events) upon BRAF knockdown [6]. In
a previous attempt to integrate the genetic and epigen-
etic alterations, our group also revealed an association
between hypomethylation of the repetitive element
LINE-1 and the presence of CDKN2A inactivation in pri-
mary CMs [7].

The aim of the present work was to investigate
whether CMs exhibit an epigenetic signature, i.e., a set
of epigenetic markers, independent of the presence of
specific genetic mutations.

Methods
Tumour samples and DNA extraction
Twenty primary CM samples and seven metastatic tis-
sues (all of them fresh frozen tissues) were retrieved
from the AC Camargo Cancer Center Biobank (ACCCC,
Sao Paulo, Brazil). Samples contained >80% of tumour
cells and an absence of necrotic regions and/or inflam-
matory infiltrate. This project was approved by the ethics
committee of the institution (CEP ACCCC 1765/13). Clin-
ical characterization of tumour samples is provided in
Additional file 1: Figure S1. The presence of melanoma
driver mutations were previously investigated in these
CMs [7] and are described in Additional file 1: Figure S1.
Three primary cultures of melanocytes isolated from
the foreskin of healthy donors [8, 9] were used as con-
trols. The primary cultures were obtained in collabor-
ation with the School of Pharmaceutical Sciences from
the University of Sao Paulo (University of Sao Paulo —
CEP HU/USP 943/09), and DNA samples were extracted
from early passages.

Whole-genome DNA methylation analysis

Approximately 500 ng of bisulfite-converted DNA from
each sample was used for analysis. We assessed the
whole-genome DNA methylation level of all samples
using an Infinium HumanMethylation450 BeadChip Kit
(HM450K) (Illumina), according to the manufacturer’s
protocol.

Data analysis was performed using an in-house pipe-
line running in R software. Briefly, a pre-processing step
was performed, excluding probes with a detection p-
value >0.01, those mapped at sex chromosomes, those
containing Single Nucleotide Polymorphisms (SNPs), or
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those mapping to multiple sites. Normalization was then
performed using the beta mixture quantile dilation
method [10] with conversion to M values. Using the me-
dian of the methylation values of the CpG probes
mapped at promoter regions (e.g., 1500 nucleotides from
the transcription start site TSS1500; 200 nucleotides
from the transcription start site TSS200; 5’UTR; and 1st
exon), a single methylation value was consolidated for
each gene promoter represented in the HM450K plat-
form. We used the Wilcoxon signed rank test (two-
sided) with a 1% false discovery rate correction to detect
significant DNA methylation differences between
groups. We then calculated the difference of median
methylation levels between groups to obtain the differ-
ential methylation value (AM) for a given gene promoter
between two given groups.

After each comparison between tumour groups har-
bouring different mutations and the control group of me-
lanocytes, we intersected the differentially methylated sites
detected in the different comparisons, thus generating a
list of commonly differentially methylated genes (DMGs).
The list of DMGs was analysed using WebGestalt software
[11] with the following default analysis parameters: Gene
Ontology (GO) enrichment and hypergeometric test with
Benjamini and Hochberg correction to identify statistically
significant enrichments (p < 0,01).

In silico analysis using publicly available data on DNA
methylation from TCGA melanoma samples

We retrieved DNA methylation values of the genes deter-
mined to be differentially methylated in an independent
cohort of primary cutaneous melanomas using HM450K
level 3 data deposited in TCGA (https://cancergenome.
nih.gov/). Methylation data from 91 primary CMs were re-
trieved, and also from 259 lymph node metastatic tissues
and 48 tissues from distant metastases. We also used our
in house pipeline to analyse the TCGA data set.

We then calculated the correlation of the methyla-
tion levels of these gene promoters between our CM
samples and TCGA data using the sites of the de-
tected signature of differentially methylated genes. We
utilized the cor.test function of R statistical software
(https://www.r-project.org/) and applied the Pearson’s
test to evaluate the significance of the correlation.
We also applied a bootstrap analysis, in which 500
genes were randomly sampled several times, and their
methylation levels correlated with the methylation
levels from the abovementioned datasets.

Results

A set of 514 differentially methylated genes constitute an
epigenetic signature for primary cutaneous melanomas
As previously reported [7], this group of CMs is com-
posed of 12 tumours harbouring CDKN2A inactivation;
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twelve tumours carried TERT promoter mutations, one
sample had a KIT mutation, four samples had NRAS
mutations, and seven had BRAF mutations. Three of the
20 tumours were wild-type for the investigated
alterations.

A total of 1396 DMG promoters were detected in
CMs compared to control melanocytes, the majority of
which (1039) were hypermethylated. Differential methy-
lation analysis against control melanocytes was then per-
formed to group the CMs according to their mutational
profile. In all cases, a substantial number of DMGs was
obtained (Additional file 2: Table S1).

We intersected all DMGs presenting with more than
10% methylation differences between CMs and control
melanocytes. A common set of 514 DMGs was obtained,
which was independent of the mutational background of
the primary CM (Additional file 3: Table S2). We then
classified these 514 genes into either hypermethylated or
hypomethylated for a GO enrichment analysis that was
performed using WebGestalt online software [11].
Hypermethylated genes were enriched in functions in-
volved in the binding of transcription factors to specific
DNA sequences, whereas hypomethylated genes were
related to transmembrane receptor and signal transducer
activities (Additional file 4: Table S3).

Validation of the signature 514 DMGs using an
independent cohort of CMs

To determine whether the detected epigenetic signature
of 514 DMGs was a finding restricted to our group of
tumours, we retrieved HM450K data from 91 primary
CMs deposited in TCGA. A high correlation of the
methylation levels of the 514 gene promoters was ob-
served upon comparing our CM group to TCGA melan-
oma samples (r = 0.90), whereas the correlation of
promoter DNA methylation level from TCGA data and
control melanocytes was lower, as expected (r = 0.63)
(Table 1). A bootstrap analysis was applied to observe
how the DNA methylation patterns of the distinct data-
sets would correlate. The correlation between the DNA
methylation values of the 500 randomly selected gene
promoters was high in all scenarios, even when compar-
ing TCGA data to control melanocytes (Table 1), similar
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to our CM group. This finding suggests that, in general,
the pattern of gene promoter methylation in all samples
(TCGA tumours, our primary CM cohort, and control
melanocytes) is very similar, reinforcing the specificity of
the identified signature of 514 DMGs for melanomas.

The signature of 514 DMGs was also tested on
HM450K data from 259 lymph node metastases and 48
distant metastases of CMs deposited in TCGA. The cor-
relation of gene promoter methylation levels between
our cohort of CMs and TCGA metastasis sets was
higher than the correlation obtained using control mela-
nocytes (Fig. 1).

Discussion

Driver mutations in melanomas are believed to promote
evolutionary advantages for mutated cells in the tumour
microenvironment, as has been described in other can-
cers [12], resulting in clonal expansion. Additionally, it is
known that tumour progression is affected by stroma
and nearby cells; specially in skin cancer, the keratino-
cytes accumulate alterations and are associated with
various stages of melanoma development [13, 14].
Therefore, we are aware that key aspects of the
melanoma-stroma interplay were not addressed by our
study design, based on the comparison with data from
cultured melanocytes.

Even though most driver genes do not encode proteins
involved in the epigenetic machinery, we could reason
that cells with distinct sets of driver mutations likely be-
have and evolve differently, resulting in (or as a result
of) different epigenetic landscapes. Hou and colleagues
observed that BRAFV600E knockdown altered the DNA
methylation landscape of cells in a melanoma cell line;
therefore, specific suppression of the previously over-
activated MAP kinase pathway resulted in the differen-
tial activity of the epigenetic machinery in those cells
[6]. This group later published another work showing a
set of epigenetic genes that are up- and down-regulated
upon suppression of BRAFV600E signalling in melan-
oma cell lines [15].

However, when we combine both the mutational and
epigenetic landscapes of primary melanomas, it can be
erroneous to attribute an epigenetic signature to a

Table 1 Correlation of promoter DNA methylation levels of DMGs between primary CMs samples, control melanocytes and
melanomas. Significant correlation of gene promoter DNA methylation levels among different HM450K cutaneous melanoma

datasets
514 DMGs signature 500 random gene sets
TCGA? vs 20 melanomas 0.90 0.99
TCGA vs melanocytes 063 0.95
20 melanomas vs melanocytes 0.65 0.95

We verified the correlation of DNA methylation of our signature of 514 differentially methylated genes (left column) and those of 500 randomly selected genes
(right column) between our CM cohort, TCGA group and the control group of melanocytes. All correlations had a p-value <2,2e-16. “TCGA: 91 primary cutaneous

melanoma from The Cancer Genome Atlas database
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Fig. 1 Correlation of gene promoter methylation levels between of
CMs cohort and TCGA metastasis sets. Correlation of promoter DNA
methylation levels of 514 differentially methylated genes between
20 primary cutaneous melanoma samples, control melanocytes and
metastatic tissues (both distant and lymph node metastases
retrieved from TCGA dataset) (p-value <2.2e-16)

particular driver mutation primarily because tumours
often accumulate several driver alterations [16]. Beyond
a possible direct relation between acquiring a given mu-
tation and further disturbance of the epigenetic land-
scape, a broad epigenetic signature could be present,
which may have been generated before acquisition of the
full spectrum of mutations, such as a root epigenetic
programme for the oncogenesis of each particular cell
type. Supporting our hypothesis, a recent work from
TCGA reported a CpG island methylator phenotype
(CIMP) that was not driven by events that led to the dis-
tinct genotypic subtypes [17]. The only strong associ-
ation with the CIMP cluster was the presence of
mutations in IDHI and ARID2 genes, both of which are
chromatin-remodelling genes.

A common group of 514 genes emerged after overlap-
ping the sets of DMGs observed in melanomas carrying
different sets of driver mutations. Interestingly, although
disclosed in a small cohort, this epigenetic signature was
validated in a larger independent dataset of malignant
melanomas from TCGA. Thomas and colleagues used a
similar assay to investigate DNA methylation differences
between CM and benign nevi [18]. The authors found
145 genes with significant DNA methylation differences
between the two groups. When comparing our 514
DMG signature with Thomas list, we found 10 genes in
common (ALOX12, ARHGDIB, COL1A2, EMR3, FRZB,
GNMT, HLA-DPB1, HOXA11, OSM, RARA), supporting
our findings. Lauss and colleagues performed an integra-
tive analysis between DNA methylation and gene
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expression in melanomas, and found 1119 genes that
presented a negative correlation between DNA methyla-
tion and gene expression [19]. Interestingly, 65 of these
genes were also present in our DMG signature, and were
enriched in pathways related to tryptophan metabolism,
and the Jak-STAT signalling pathway. The association of
DNA methylation events with pathologic features used
for the AJCC melanoma staging made by Thomas and
colleagues, [20] revealed a short list of 17 differentially
methylated genes. Two of these, HOXA9 and MMPI14,
associated with tumour thickness and mitotic rate, re-
spectively, were also present in our DMG signature.

Some of the aberrantly methylated genes have
already been determined to be related to melanomas,
such as PRAME, an antigen that is preferentially
expressed in human melanomas [21], as well as AIM2
(absent in melanoma 2 [22]), S100A4 [23], and
TRPM1I, which is inversely correlated with melanoma
aggressiveness and is used as a prognostic marker for
melanoma metastasis [24].

Conclusions

With these exciting results, we hope to highlight the
contribution of epigenetic deregulation to melanoma de-
velopment. This signature of aberrant methylation in
promoter CpG sites of 514 genes can also be tested in
precursor lesions, such as dysplastic nevi, as well as
other types of skin and solid tumours, which may open a
new avenue for early diagnosis. In fact, Gao and col-
leagues developed an algorithm that incorporates the
promoter DNA methylation status of five genes (three of
them present in our epigenetic signature — CLDNI1I,
PPPIR3C and GNMT), that can distinguish melanoma
from dysplastic nevus [25].

Additional files

N
Additional file 1: Figure S1. Description of clinical data and mutational
profiles of 20 primary cutaneous melanomas (previously described in [7]).
Each case is depicted in a different column. The mutational profile of the
CMs is depicted in the upper panel, whereas the compilation of clinical
data are shown in the lower panel. (XLSX 13 kb)

Additional file 2: Table S1. Number of differentially methylated genes
in the comparison of cutaneous melanomas carrying distinct driver
mutations with the group of control melanocytes. AM refers to the
mathematical conversion of beta values extracted from HM450K, which
reflect the absolute methylation level for a given probe on the
microarray platform. *Activating MAPK: any tumour with mutations in
BRAF, NRAS and KIT. (XLSX 10 kb)

Additional file 3: Table S2. List of the 514 differentially methylated
gene promoters detected in the primary CMs compared to control
melanocytes. (XLSX 15 kb)

Additional file 4: Table S3. Gene Ontology analysis using the common
set of 514 differentially methylated genes detected in primary cutaneous
melanomas compared to control melanocytes. *We used WebGestalt
software, which was previously used to classify the 514 DMGs in
hypermethylated and hypomethylated sites in tumours. (XLSX 10 kb)
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